skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bai, Qinxun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Krause, Andreas and; Brunskill, Emma; Cho, Kyunghyun; Engelhardt, Barbara; Sabato, Sivan; Scarlett, Jonathan (Ed.)
    Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning. By exploiting historical transitions, a policy is trained to maximize a learned value function while constrained by the behavior policy to avoid a significant distributional shift. In this paper, we propose our closed-form policy improvement operators. We make a novel observation that the behavior constraint naturally motivates the use of first-order Taylor approximation, leading to a linear approximation of the policy objective. Additionally, as practical datasets are usually collected by heterogeneous policies, we model the behavior policies as a Gaussian Mixture and overcome the induced optimization difficulties by leveraging the LogSumExp’s lower bound and Jensen’s Inequality, giving rise to a closed-form policy improvement operator. We instantiate both one-step and iterative offline RL algorithms with our novel policy improvement operators and empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark. Our code is available at https://cfpi-icml23.github.io/. 
    more » « less
  2. Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesvari, Csaba; Niu, Gang; Sabato, Sivan (Ed.)
    Reinforcement learning (RL) has demonstrated remarkable achievements in simulated environments. However, carrying this success to real environments requires the important attribute of robustness, which the existing RL algorithms often lack as they assume that the future deployment environment is the same as the training environment (i.e. simulator) in which the policy is learned. This assumption often does not hold due to the discrepancy between the simulator and the real environment and, as a result, and hence renders the learned policy fragile when deployed. In this paper, we propose a novel distributionally robust Q-learning algorithm that learns the best policy in the worst distributional perturbation of the environment. Our algorithm first transforms the infinite-dimensional learning problem (since the environment MDP perturbation lies in an infinite-dimensional space) into a finite-dimensional dual problem and subsequently uses a multi-level Monte-Carlo scheme to approximate the dual value using samples from the simulator. Despite the complexity, we show that the resulting distributionally robust Q-learning algorithm asymptotically converges to optimal worst-case policy, thus making it robust to future environment changes. Simulation results further demonstrate its strong empirical robustness. 
    more » « less
  3. Regularization plays a crucial role in supervised learning. Most existing methods enforce a global regularization in a structure agnostic manner. In this paper, we initiate a new direction and propose to enforce the structural simplicity of the classification boundary by regularizing over its topological complexity. In particular, our measurement of topological complexity incorporates the importance of topological features (e.g., connected components, handles, and so on) in a meaningful manner, and provides a direct control over spurious topological structures. We incorporate the new measurement as a topological penalty in training classifiers. We also propose an efficient algorithm to compute the gradient of such penalty. Our method provides a novel way to topologically simplify the global structure of the model, without having to sacrifice too much of the flexibility of the model. We demonstrate the effectiveness of our new topological regularizer on a range of synthetic and real-world datasets. 
    more » « less